skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hallinan, Gregg W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Line-intensity mapping is a promising probe of the Universe’s large-scale structure. We explore the sensitivity of the DSA-2000, a forthcoming array consisting of over 2000 dishes, to the statistical power spectrum of neutral hydrogen’s 21 cm emission line. These measurements would reveal the distribution of neutral hydrogen throughout the near-redshift Universe without necessitating resolving individual sources. The success of these measurements relies on the instrument’s sensitivity and resilience to systematics. We show that the DSA-2000 will have the sensitivity needed to detect the 21 cm power spectrum at z ≈ 0.5 and across power spectrum modes of 0.03–35.12 h/Mpc with 0.1 h/Mpc resolution. We find that supplementing the nominal array design with a dense core of 200 antennas will expand its sensitivity at low power spectrum modes and enable measurement of Baryon Acoustic Oscillations. Finally, we present a qualitative discussion of the DSA-2000's unique resilience to sources of systematic error that can preclude 21 cm intensity mapping. 
    more » « less
  2. Abstract FRB 121102 is the first fast radio burst to be spatially associated with a persistent radio source (QRS 121102), the nature of which remains unknown. We constrain the physical size of QRS 121102 by measuring its flux-density variability with the VLA from 12 to 26 GHz. Any such variability would likely be due to Galactic refractive scintillation and would require the source radius to be ≲1017cm at the host-galaxy redshift. We found the radio variability to be lower than the scintillation theory predictions for such a small source, leaving open the possibility for non-AGN models for QRS 121102. In addition, we roughly estimated the mass of any potential supermassive black hole (BH) associated with QRS 121102 from the line width of the host-galaxy Hαemission using a new optical spectrum from the Keck Observatory. The line width indicates a supermassive BH mass of ≲104∼5M, too low for the observed radio luminosity and X-ray luminosity constraints, if QRS 121102 were an AGN. Finally, some dwarf galaxies that host supermassive BHs may be the stripped cores of massive galaxies during tidal interactions with companion systems. We find no nearby galaxy at the same redshift as the QRS 121102 host from low-resolution Keck spectra or the PanSTARRS catalog. In conclusion, we find no evidence supporting the hypothesis that QRS 121102 is an AGN. We instead argue that the inferred size and flat radio spectrum favor a plerion interpretation. We urge continued broadband radio monitoring of QRS 121102 to search for long-term evolution. 
    more » « less